Nonlinear Dimensionality Reduction by Multi Layer Perceptron Using Superposed Energy

نویسندگان

  • Takashi TAKAHASHI
  • Ryuji TOKUNAGA
چکیده

| We investigate an energy function for MLP called superposed energy. Applying to autoassociative learning of a sandglass-type MLP, it can adaptively adjust the e ective number of the bottlenecklayer units to the intrinsic dimensionality of nonlinear data, and the optimal dimensionality reduced representation can be extracted after learning.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy Functions for Efficient Nonlinear Dimensionality Reduction by Multi Layer Perceptrons

This paper investigates two simple energy functions which are valid for two di erent purposes of dimensionality reduction: feature extraction and data compression. These energy functions enable nonlinear perceptrons to organize data representations whose parameters, namely, outputs of the bottleneck layer units, are arranged in the order of their importance. The e cacy of these energy functions...

متن کامل

Dimensionality Reduction and Improving the Performance of Automatic Modulation Classification using Genetic Programming (RESEARCH NOTE)

This paper shows how we can make advantage of using genetic programming in selection of suitable features for automatic modulation recognition. Automatic modulation recognition is one of the essential components of modern receivers. In this regard, selection of suitable features may significantly affect the performance of the process. Simulations were conducted with 5db and 10db SNRs. Test and ...

متن کامل

Comparison Between Geometry-Based and Gabor-Wavelets-Based Facial Expression Recognition Using Multi-Layer Perceptron

In this paper, we investigate the use of two types of features extracted from face images for recognizing facial expressions. The first type is the geometric positions of a set of fiducial points on a face. The second type is a set of multi-scale and multi-orientation Gabor wavelet coefficients extracted from the face image at the fiducial points. They can be used either independently or jointl...

متن کامل

Dimensionality Reduction Using Rough Set Approach for Two Neural Networks-Based Applications

In this paper, Rough Sets approach has been used to reduce the number of inputs for two neural networks-based applications that are, diagnosing plant diseases and intrusion detection. After the reduction process, and as a result of decreasing the complexity of the classifiers, the results obtained using Multi-Layer Perceptron (MLP) revealed a great deal of classification accuracy without affect...

متن کامل

A TS Fuzzy Model Derived from a Typical Multi-Layer Perceptron

In this paper, we introduce a Takagi-Sugeno (TS) fuzzy model which is derived from a typical Multi-Layer Perceptron Neural Network (MLP NN). At first, it is shown that the considered MLP NN can be interpreted as a variety of TS fuzzy model. It is discussed that the utilized Membership Function (MF) in such TS fuzzy model, despite its flexible structure, has some major restrictions. After modify...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999